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Abstract
We study in a Landau–de Gennes approach the biaxial structure of a nematic
point defect with topological charge M = +1. We aim to illuminate the role
of the confining boundaries in determining the fine structure of the defect. We
show that there are different regimes associated with different values of the ratio
between the typical size R of the region in space occupied by the material and
the biaxial correlation length ξb. For R/ξb > 20 the core structure is already
qualitatively universal, that is, independent of the confining geometry, while
also for R/ξb > 200 any quantitative difference is unlikely to be detected.

PACS numbers: 6130, 6130J, 6172B

1. Introduction

Defects play an important role in a number of areas in physics [1]. In different media they
are also referred to as disclinations, dislocations, vortices or strings. Topological defects in
ordered media correspond to regions where a configuration of the relevant order parameter
field cannot be transformed into a ground state via continuous deformations without affecting
the far field [1]. The net advantage in studying defects is that they exhibit many universal
features [1–3], so that a single special system can serve as a paradigm in the study of many
phenomena. Various liquid crystal phases are especially fit for this purpose because they can
easily be accessed experimentally and they exhibit almost all kinds of defects [2, 4].

The simplest liquid crystals are nematic; they consist of elongated molecules characterized
by a long-range orientational ordering (see, e.g., chapter 2 of [5]). A local average molecular
orientation is conventionally described by the uniaxial director n, with both n and −n

corresponding to the same physical state (this is also called the head–tail invariance). In the
bulk ground state n is homogeneously aligned along a generic symmetry-breaking direction.
Defects in nematic liquid crystals are classified in terms of the topological charge M , which
depends on the director field surrounding the defect [1]. Either point or line defects exist,
characterized by an integer or half-integer M . In most cases the free energy associated with
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Figure 1. Schematic representation of the biaxial core of
a hedgehog. We show the section with a plane through
the symmetry axis of the core. The ellipses suggest the
molecular orientation on this section: the points where they
degenerate in a disc are traversed by the uniaxial ring with
negative scalar order parameter, which comes out of the page;
accordingly, the broken circles show the trace of the torus
with a maximum degree of biaxiality. Both the symmetry
axis and the far director field are uniaxial with positive scalar
order parameter.

a defect is proportional to M2, so that defects with low topological charges are preferred:
precisely, M = ±1 for point defects and M = ± 1

2 for line defects.
The point defects with M = +1 are referred to as hedgehogs. They are often pictured as

point-like objects with an inner structure. Generally, a director field fails to describe their core:
sometimes, an extra scalar order parameter suffices. This is the uniaxial hedgehog, where the
centre of the core is isotropic and surrounded by a spherically symmetric uniaxial paranematic
ordering [6–9]. The core size is roughly given by the nematic uniaxial correlation length ξn.

More often, the core exhibits a cylindrically symmetric structure characterized by a
uniaxial ring [9, 11–14] embedded in a torus with maximal degree of biaxiality [15]3. This
structure is strongly biaxial and requires at least a tensorial description of the local nematic
ordering. A symmetric traceless tensor Q proves useful in representing all admissible states
(cf p 56 of [5] and section 2 below). The essential features of the distribution in space of the
molecular orientational order is depicted schematically in figure 1, where a field of ellipses
describes both eigenvalues and eigenvectors of the tensor Q+ 1

3I on every longitudinal section
of the defect core4. The long axis of the ellipses represents the preferred molecular orientation
on this section; accordingly, a circle represents an isotropic planar molecular distribution.
In this picture, the uniaxial ring crosses the longitudinal section precisely at the two points
where the ellipses degenerate into a circle. In more technical language (see, for example,
[8, 12]), we say that the states along the ring are uniaxial with a negative scalar order parameter
and nematic director everywhere tangent to the ring, meaning that the nematic molecules
tend to be spread orthogonally to the director. Contrariwise, the states along the symmetry
axis of this structure are uniaxial with a positive scalar order parameter and nematic director
everywhere parallel to the axis. Figure 1 also illustrates the cross section of the torus with
maximal biaxiality found in [15]: here the ellipses representing the local orientational order
become distorted the most. The characteristic sizes of both ring and torus are determined
by the nematic biaxial correlation length ξb defined below. Away from the torus, where a
positive uniaxial ordering is soon recovered, the director field is essentially radial relative to
the core, though in part presumably affected by the far director field imposed by the boundary
conditions.

3 Another, more complex core structure, referred to as a core split, was analysed recently in [10]; however, this is
never absolutely stable, though it could be metastable for appropriate temperatures and within a restricted class of
competing structures.
4 Here I denotes the identity tensor.
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Despite the fact that the fine equilibrium structure of point defects is rather well explored,
several problems still remain open: in particular, the confining effect of the boundary
conditions, the role of the core in the interaction between defects and in their non-equilibrium
dynamics. Here we focus our attention on the influence of both the confining geometry and
its typical size R on the biaxial structure of a point defect with M = +1. This paper mainly
concerns the spherical confinement, as the cylindrical case has already been examined in detail
in [15]. By comparing the results of our analysis in the two cases we conclude that the core
structure of a hedgehog becomes universal for R large enough, when it ceases to be affected
by the far director field.

The plan of the paper is as follows. In section 2 we outline the mathematical model
employed here. In section 3 we compare the effect on the defect core of both cylindrical and
spherical confinements. In section 4, we explore the stability of the ring structure against the
uniaxial hedgehog. Finally, in the last section we summarize the main conclusion of the paper.

2. Mathematical model

In this section we recall the mathematical model introduced in [15] to describe the fine structure
of a hedgehog in a capillary tube and we adapt it to a hedgehog within a spherical cavity.

2.1. Landau–de Gennes approach

We describe nematic states through an order tensor Q, which is both symmetric and traceless.
In its eigenframe it can be expressed as

Q =
3∑
i=1

qiei ⊗ ei (1)

where ei , for i = 1, 2, 3, are the eigenvectors and qi the corresponding eigenvalues [8, 16]. In
the uniaxial limit, Q reduces to

Q = s
(
n ⊗ n − 1

3I
)

(2)

where n is the nematic director and s the scalar uniaxial order parameter. According to [17]
the degree of biaxiality is defined as

β2 := 1 − 6
(tr Q3)2

(tr Q2)3
(3)

and ranges in the interval [0, 1]. In all uniaxial states β2 = 0, while states with maximal
biaxiality correspond to β2 = 1.

In this tensorial representation of nematics the Landau–de Gennes free energy F is
expressed as

F =
∫
(A(T − T∗) tr Q2 − B tr Q3 + C(tr Q2)2 + L|∇Q|2) dv (4)

where v is the volume measure,A,B andC are positive material constants, T is the temperature
and T∗ is the nematic supercooling temperature. The elastic properties of the system are
described by a single elastic constant L which is independent of the temperature (see also
[18]).

We further adopt Lyuksyutov’s constraint [19], which reads as

tr Q2 = A(T∗ − T )

2C
. (5)
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Figure 2. Parametrization for the eigenframe of Q both
in (a) cylindrical and (b) spherical coordinates.

Thus we assume that in nematics local distortions are only produced by reorientations of the
eigenvectors ei or exchanges in the eigenvalues qi . Within this approximation all distortions
that would require melting of the nematic order, attained at Q = 0, are avoided by entering
biaxial states. This is a reasonable assumption as long as the material constantB is considerably
smaller than both A and C, as is the case in a typical nematic phase (other applications of this
constraint can be found in [8, 12, 15]).

2.2. Parametrization

Since here we study the effect of both cylindrical and spherical confinements on the core of a
point defect, we need to resort to both cylindrical and spherical coordinates, which are denoted
by {ρ, ϕ, z} and {r, ϑ, ϕ}, respectively: the corresponding unit vectors along the coordinate
axes are {eρ, eϕ, ez} and {er , eϑ , eϕ}. The defect is set at (ρ, z) = (0, 0) in the former
coordinate system and at r = 0 in the latter: the symmetry axis is ez in both cases, though it is
represented as either ρ = 0 or ϑ = 0. We confine attention to nematic distortions described by
tensors Q with an eigenvector along eϕ in both symmetries. By Lyuksyutov’s constraint (5),
all such tensors can be represented through the following parametrization [8, 15] (see figure 2):

e
(c)
1 = cos κ eρ + sin κ ez e

(s)
1 = cosχ er + sin χ eϑ

e
(c)
2 = − sin κ eρ + cos κ ez e

(s)
2 = sin χ er − cosχ eϑ

e3 = eϕ

(6)

and
q1 = 2

3 seq cosψ q2 = − 2
3 seq cos

(
ψ + 1

3π
)

q3 = − 2
3 seq cos

(
ψ − 1

3π
)
.

(7)

Henceforth the superscripts (c) and (s) denote cylindrical and spherical confinement,
respectively. In equation (7) seq is the equilibrium value of the uniaxial scalar order parameter:
it is a function of the temperature such that (5) can also be written as

tr Q2 = 2
3 s

2
eq.

The angle ψ , which ranges over [−π, π ], describes the eigenvalues of Q. As explained in
detail in [8, 15], it represents both uniaxial and biaxial states. The angles κ and χ determine
the orientation of the eigenvectors of Q relative to the axes of the corresponding coordinate
system (figure 2). It is indeed a merit of Lyuksyutov’s constraint if only two scalars suffice to
describe all admissible tensors Q. We further simplify the problem by taking Q as a function
of (ρ, z) or (r, ϑ) in the cylindrical or spherical confinement. In both cases, we do not consider
twisted distortions that would make Q depend on ϕ.

As remarked in [15], this parametrization fails to be injective: there are transformations
in the parameter spaces that leave Q unchanged. The one that plays an important role in our
development is

Q(α, ψ) = Q(α ± 1
2π,

2
3π − ψ) (8)
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whereα is either κ orχ . It ensures that bothα andψ can suffer a jump without any discontinuity
in Q. We refer the reader to [12, 15] for more details on how this ambiguity is exploited to
describe the uniaxial ring in the biaxial structure of a point defect.

2.3. Dimensionless free energy

When strong anchoring conditions are imposed on the confining boundary, be it a cylinder or
a sphere, the only characteristic lengths entering the model are the biaxial correlation length

ξb :=
√

2L
3Bseq

and the radius R of either confining cavity. We measure all lengths relative to

R so that ρ → Rρ, z → Rz, r → Rr , ξb → Rξb, ∇ → 1
R
∇; in these units R = 1. We

measure the free energy F in terms of F0 := RLs2
eq: thus, in the following F → F0F . For

convenience, we also define the excess free energy as "F := F − Fbulk, where Fbulk denotes
the free energy of a nematic undistorted in the bulk.

For the two different confinements considered here, "F is delivered by the integrals

"F(c) = 2π
∫ +h/2

−h/2
dz

∫ 1

0
dρ ρ"f (c)

"F (s) = 2π
∫ 1

0
dr r2

∫ π

0
dϑ sin ϑ"f (s)

(9)

where h is the dimensionless height of the cylinder, and both excess free energies densities
have the structure

"f = 1

ξ 2
b

σb + σe.

The bulk potential term σb is the same for both confinements:

σb = 4
27 (1 − cos 3ψ) (10)

while the elastic term σe is given by the following expressions:

σ (c)e = 8

3

[
1

4

((
∂ψ

∂ρ

)2

+

(
∂ψ

∂z

)2)
+ sin2

(
ψ − π

3

)((
∂κ

∂ρ

)2

+

(
∂κ

∂z

)2)

+
1

ρ2

(
sin2

(
ψ +

π

3

)
cos2 κ + sin2 ψ sin2 κ

)]
(11)

σ (s)e = 2

3

((
∂ψ

∂r

)2

+
1

r2

(
∂ψ

∂ϑ

)2)

+
8

9

(
cosψ + cos

(
ψ +

π

3

))2((
∂χ

∂r

)2

+
1

r2

(
∂χ

∂ϑ
+ 1

)2)

+
8

9r2 sin2 ϑ

(
cos2(χ + ϑ) sin2 ψ + sin2(χ + ϑ) sin2

(
ψ +

π

3

))
. (12)

The anchoring conditions to be imposed on Q are such that it represents a uniaxial state with
positive scalar order parameter and director along the normal to either the lateral boundary of
the cylinder or the whole sphere.
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3. Fine core structure

In a cylinder, point defects arise because the director field has the same energy in either escaped
radial solutions found in [20] (see also [21, 22]). In the parametrization employed here, they
are described by setting

ψ ≡ 0 and κ = ±κER with κER(ρ) := 1
2π − arctan ρ.

Wherever two opposite escaped fields meet, a point defect on the axis joins them together,
exhibiting the fine structure described in [15]. There the uniaxial ring is the locus ρ = ρu in
the plane z = 0 where ψ = π

3 , while κ ≡ π
2 for 0 � ρ < ρu, and κ ≡ 0 for ρu < ρ � 1. This

is the only jump in κ that causes neither a singularity in the free energy nor a discontinuity in
Q, because for ψ = π

3 the coefficient of |∇κ|2 in (11) vanishes, and by (5) a change by π
2 in κ

does not affect Q. However, ∇ψ may fail to be continuous along the uniaxial ring. In [15] the
excess free energy is indeed minimized within the class of fields {κ,ψ} with precisely these
admissible jumps on a ring where ψ = π

3 , which is otherwise free to vary in the plane z = 0.
For h sufficiently large, the appropriate boundary conditions for {κ,ψ} read as

{κ,ψ}|ρ=0 = {
1
2π, 0

} {κ,ψ}|ρ=1 = {0, 0}
{κ,ψ}|z=± h

2
= {κER, 0}. (13)

It should be noted that by equation (13)1 the singularity of σ (c)e as ρ → 0 can be made integrable
in (9)1.

Similarly, within a sphere the uniaxial ring lies in the plane ϑ = π
2 at r = ru, where

ψ = π
3 , while χ ≡ −π

2 for 0 � r < ru and χ ≡ 0 for ru < r � 1. Along this ring
the coefficient of |∇(χ + ϑ)|2 in (12) vanishes, and by (5) Q is continuous. The boundary
conditions for {χ,ψ} are

{χ,ψ}|ϑ=0,π = {0, 0} {χ,ψ}|r=1 = {0, 0}
{χ,ψ}|r→0 = {−ϑ, 0}.

(14)

In the latter, which is required for the continuity of {χ,ψ} at the origin, the limit as r → 0 is
taken along a radius with constant ϑ . By (14)1, the singularity of σ (s)e along the polar axis can
be made integrable in (9)2.

The defect structure for both cylindrical and spherical confinements and different values of
R are determined numerically by applying the relaxation method in [23] to the Euler–Lagrange

Figure 3. Logarithm plot of the degree of
biaxialityβ2 on a plane through the symmetry
axis of the core.

(This figure is in colour only in the electronic
version, see www.iop.org)
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Figure 4. Effect of confinement on the uniaxial ring and the biaxial torus. Here µu = ξu/ξb and
µr = ξ⊥/ξ‖, with ξu equal to either ρu or ru, and 2ξ⊥, 2ξ‖ the width and the height of the torus
with a maximum degree of biaxiality.

equations for "F . Across the equilibrium uniaxial ring both "f (c) and "f (s) turn out to be
continuous. There are two different length scales in our model, namely, the length R over
which spatial distortions in κ or χ are typically exhibited for constant ψ , and the length ξb
which defines the scale of variation forψ . To calculate the defect structure in the limitR � ξb,
we introduce the logarithm scales uρ := ln ρ and ur := ln r , both cut below an appropriate
value uc, for which we used uc = 10−3. For example, figure 3 illustrates the biaxial torus by
showing the graph of β2 as a function of (uρ, z) for the minimizer of "F(c).

The effect of the two different confinements on the biaxial structure of a point defect is
shown in figure 4 by plotting the ratios between the lengths ξu, ξ‖ and ξ⊥ against R/ξb. Here
ξu denotes either ρu or ru, while 2ξ‖ and 2ξ⊥ are the height and the width of the torus cross
section. For R large enough, precisely for R > 20ξb, the torus cross section is essentially
circular in both confinements, whereas ru is appreciably larger than ρu. For even larger values
of R (R > 200ξb), the whole core structure is almost the same for both confining geometries:
in particular, for R/ξb = 1000, the two cores are indistinguishable within our degree of
accuracy.

This fact clearly indicates that the defect core acquires a universal structure if the
characteristic size of the confining cavity is large enough: in other words, the core structure
does not depend on the far director field. Only the changes in the order parameter field ψ play
a primary role in shaping the core of a hedgehog.

On the other hand, when R is decreased the torus cross section becomes increasingly
prolate in the direction of the symmetry axis and all characteristic lengths decrease likewise.
This effect is, however, far less pronounced in the spherical geometry than in the cylindrical
one, as more room is left in the latter for the biaxial torus to remain anisotropic.

4. Stability of the biaxial core structure

So far we have examined the biaxial core structure around the uniaxial ring without questioning
its stability versus the uniaxial hedgehog, which appears as its natural competitor. Here we
show that deep in the nematic phase the biaxial core structure is indeed stable relative to the
uniaxial one. More detailed stability analyses, where two elastic constants enter (4) instead of
a single one, can be found in [8–10].
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Consider a point defect at the centre of a sphere of radius R. In the uniaxial hedgehog
around it, the scalar order parameter s defined in (2) fails to be constant: it vanishes at the centre
of the sphere. Accordingly, here Lyuksyutov’s constraint is no longer taken as valid. In addition
to R, the relevant characteristic size of this structure is the nematic uniaxial correlation length
ξ , which varies with the temperature T . In the appendix to [15] we arrived at the following
expression for ξ :

ξ(τ ) = ξn

√
2√

−4τ + 9
2 + 3

2

√
9 − 8τ

(15)

where

τ := T − T∗
TIN − T∗

is the reduced temperature. Here TIN and T∗ are the bulk isotropic–nematic transition
temperature and the nematic supercooling temperature, respectively. Clearly, ξn = ξ(1) is
the nematic correlation length at the isotropic–nematic transition.

In terms of the reduced temperature the equilibrium value of the uniaxial order parameter
seq reads as

seq(τ ) = s0
3 +

√
9 − 8τ

4
=: s0q

where s0 := B
4C is the value of seq at the isotropic nematic transition. Similarly, the biaxial

correlation length ξb is a function of τ :

ξb(τ ) = ξn

3
√
q
.

It should be noted that ξ is more influenced by the temperature than ξb: the ratio µ := ξb
ξ

is a
monotonically decreasing function of τ .

We have shown in [15] that for a line defect the biaxial structure is favoured energetically
over the uniaxial structure whenever µ > 1. Below we perform a similar comparison for
the core structure of a point defect in spherical symmetry. The corresponding dimensionless
excess free energy density is now expressed in terms of the scaled uniaxial order parameter
u := s

seq(τ )
as

"f (u) = 1

ξ 2
n

σ
(u)
b + σ (u)e

where

σ (u)e = 4u2

r2
+

2

3

(
∂u

∂r

)2

(16)

σ
(u)
b = 2

3

(
u2

(
τ − 2uq + u2q2

) − (
τ − 2q + q2

))
. (17)

Here the superscript (u) refers to the uniaxial core structure in the sphere. Accordingly, the
excess free energy stored in the whole sphere is denoted by "F(u).

In figure 5 the ratio η := "F(u)

"F (s) between the excess free energies for the uniaxial and biaxial
core structures is plotted as a function of µ for three different radia. It turns out that η > 1
over the whole regime studied here, indicating the stability of the biaxial core structure versus
the uniaxial one.
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Figure 5. The ratio η := "F(u)

"F (s)
as a function of µ := ξb

ξ
computed for R

ξb
= 10 (dotted curve),

R
ξb

= 100 (broken curve) and R
ξb

= 1000 (full curve).

Figure 6. The ratio "F(u)

"F
(u)
0

as a function of R
ξ

: it is close to 1 for R
ξ
> 100.

To compute the total free energy "F
(u)
0 stored in the sphere when the uniaxial order

parameter s equals its equilibrium value seq everywhere, it suffices to set u ≡ 1 in both
equations (16) and (17), thus obtaining5 "F

(u)
0 = 16π . Figure 6 illustrates the graph of the

ratio "F(u)

"F
(u)
0

as a function of R
ξ

: the approximation of "F(u) with "F(u)
0 then turns out to be

rather good for R > 100ξ .

5. Conclusion

We imagined a geometric confinement on the fine structure of a nematic hedgehog. We
considered only the case where the local topological frustrations in the uniaxial description

5 To recover the most familiar expression for this energy, that is, 4πKR, the reader should heed that here Frank’s
constant K equals 4Ls2

eq and all free energies are expressed in units of RLs2
eq.
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are removed without melting the nematic order. Our study indicates that the defect structure is
universal if the characteristic confinement length (or separation between interacting defects in
the bulk) is large enough relative to the typical biaxial correlation length. Thus the eigenvalues
of Q play a primary role compared with its eigenvectors in shaping the defect core. In the
opposite limit, the confining geometry is reflected on the core symmetry.
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